On this page:

Quantified Awesome: Adding calendar heatmaps to categories

It’s amazing how little tweaks give you a whole new sense of the data. I’ve been using Cal-HeatMap to look at my blogging history. I figured I’d build it into Quantified Awesome to make it even easier to analyze how I spend my time. 1.9 hours later, here’s what I have. All totals are reported for the past 12-month period by default (as of this writing, July 19 2012 to July 19 2013, including the day’s activities), but it adjusts depending on the filter settings.

Here’s me working on the Quantified Awesome system:

image

Instead of just a table of log entries or a summary of numbers, I can see the gaps and sprints in my activity.

Here’s the one for Discretionary – Productive:

image

Pretty consistent, actually.

and Discretionary – Play:

image

February must’ve been when I had a new video game to tinker around with. Plenty of opportunities to relax.

Here’s my Business – Earn graph:

image

and Business – Build:

image

I’ve been biking pretty regularly, mostly on Tuesdays and Thursdays…

image

In contrast, I take the subway only if it’s winter or really rainy, if I’m going somewhere far or steeply uphill, or if my bike is flat (as it was yesterday).

image

Neato. I should definitely do this for groceries too, now that I’ve loaded my grocery receipts into Quantified Awesome! (No public link yet for that data, sorry. =) ) I also want to figure out how to speed things up enough so that I can do quartile analysis and then use that to colour the scale…

Calendar heatmaps for the win!

Quantified Time: Comparing notes

image

David Achkar has a great blog post sharing his observations from 42 days of time-tracking using Google Calendar and a few scripts for export and analysis. Since it’s fun to be able to compare numbers, I thought I’d reflect on 2013 so far.

Like David, I spend about half of my life on “survival”-type activities (48%): sleep, routines, exercise, walking, and so on. I include planning in my Personal category, even though that might be more of a discretionary activity, because planning helps keep me sane. I count my bike commutes as part of this category as well, because I think of it as exercise. Without the bike commutes, exercise, and planning, the part of my week used for survival activities is down to 44%.

I don’t think that’s a bad proportion at all. After all, you’ve got to sleep sometime. =) While some people can get along fine on four hours of sleep (hello, Papa!), I know I need my 8-9 hours of sleep, because I feel fuzzy when I don’t get it. Assuming I sleep an average of 8.5 hours a day—which turns out to be the actual result from my 2013 numbers—that leaves me with 15.5 hours of awake-time for awesomeness. Of those waking hours, I use:

  • 36% for business,
  • 19% for personal routines,
  • 12% for chores and other unpaid work,
  • 11% for socializing (family and others),
  • 11% for productive discretionary activities,
  • 8% for relaxation and enjoyment,
  • and 3% for other activities.

So that’s roughly 58% of waking hours for good stuff, which is plenty of time to get things done. And the chores are pretty good for me, too – cooking and tidying are relaxing. =) I don’t mind. If anything, I should probably increase my “overhead” and spend more time exercising and wandering.

Choosing your time

David talks about being aware of and consciously choosing activities instead of simply reacting to whatever comes our way. It’s one of the nifty unexpected benefits of time-tracking: once you put a name to the time you’re spending, it becomes easier to recognize other things as not that activity. Working? Facebook doesn’t count. Relaxing? Checking e-mail doesn’t count.

Tracking your time manually adds a tiny bit of friction to switching tasks (you need to track it yourself, after all!), but this turns out to be a good thing. It encourages you to put off distractions until you legitimately track it as that, and if you’re going to do that, you might as well do that for at least five minutes. As it happens, postponing distractions makes them less tempting.

Busyness

I look at my work time mainly as a way of keeping it in check. =) I’m delighted to see that my average business-related time per week is 39:29 in 2013 so far and 39:51 in 2012, amazingly close to my target of 40. (How do I manage that? Boggle.) 

2013 has an average of 18:13 billable hours a week. This is down from 19:49 in 2012, which is good because I’ve been moving towards focusing on my own things. I’ll try to bring this down to less than 8 hours a week next year, to see what that’s like. If I can get one to three good things done each day, that’s enough.

Focus

It turns out that I can actually concentrate in long stretches, and that I can arrange my time to accommodate these spans if needed. I tend to favour 0-2 hour sprints, though. Flow feels great – but it’s also dangerously seductive, and limiting it might be worth a good idea.


Category < 1 hour 1 hour 2 hours 3 hours 4 hours 5 hours 6 hours >= 7 hours
Business – Build – Book review 4 3            
Business – Build – Coding 39 17 6 3 1   1  
Business – Build – Delegation 12 1            
Business – Build – Drawing 46 15 7 1        
Business – Build – Learn 13 2 2   1      
Business – Build – Paperwork 69 18 2     1    
Business – Build – Plan 14 4 3   1      
Business – Build – Quantified Awesome 34 18 6 2 3 1    
Business – Build – Research 10 4   1        
Discretionary – Productive – Emacs 33 19 5   2 2   1
Discretionary – Productive – Gardening 36 3            
Discretionary – Productive – Japanese 45 11 1 1        
Discretionary – Productive – Nonfiction 20 7 2       1  
Discretionary – Productive – Outlining 4 1            
Discretionary – Productive – Sewing 1 1            
Discretionary – Productive – Tracking 4              
Discretionary – Productive – Writing 153 38 6 1 1   1  

(I posted a similar analysis in 2011.)

Since practically all of my meetings are discretionary, I don’t need to make a special effort to clear large blocks of my day for concentrated work. Even when the day stretches before me without a calendar entry in sight, I usually don’t spend it all doing One Thing. I shift from one activity to another when I reach a good stopping point, following my interests or energy. Besides, food is important, so I usually interrupt my work for lunch or a snack. No marathon sessions for me!

(One year, I got so carried away programming that I forgot to make sure I drank regularly, and I fainted from dehydration. Other times, I’ve forgotten to take care of important things. So… right. I’ll pick moderation even if task-switching cuts into efficiency.)

Urgency

Very little in my life is urgent, so I’m rarely stressed. That’s partly because I have the freedom to minimize commitments and to recover from mistakes. I usually answer my e-mail within a week or two.  I could probably earn more or do more if I was more responsive or went looking for more commitments, but I don’t want to give up my creative time by shackling myself to e-mail or schedule expectations.

Other thoughts

Time data is an amazing thing to have, and it’s well worth tracking. I’m looking forward to more analyses from David. If you track and analyze your time, I’d love to hear from you too!

David Achkar: A Life Logged: Surprises and Insights

Planning a Quantified Self workshop on time tracking

image

The other Quantified Self Toronto organizers and I have been thinking about following up on the “slow data” workshop idea from the QS Conference in Europe this year, which Eric Boyd is really keen on. The idea is that self-tracking takes time to plan, to get data, to get back into collecting data after you’ve fallen out of the habit, to analyze data, to revise your experiment based on what you learned… so although 15-minute bursts of inspiration are great for showing people what people are working on, wouldn’t it be nice to go through an extended workshop with support at just the right moments? Based on our survey results, people might even be willing to pay for monthly or semi-monthly workshops.

I’m interested in tracking time much more than I’m interested in health or other popular self-tracking topics, so I’d love to experiment with building resources and workshops for people who are interested in tracking time as well. The payoff? I’d love to be able to compare questions, data, and conclusions.

Here’s what that workshop might look like:

Session 1: The Whys and Hows of Tracking Time

  • Discuss objectives and motivations for tracking time. Plan possible questions you want to ask of the data (which influences which tools to try and how to collect data). Recommend a set of tools based on people’s interests and context (paper? iPhone? Android? Google Calendar?).
  • Resources: Presentations on time-tracking, recommendations for tools, more detail on structuring data (categories, fields); possible e-mail campaign for reminders
    Output: Planning worksheet for participants to help people remember their motivations and structure their data collection; habit triggers for focused, small-scale data collection, buddying up for people who prefer social accountability

Session 2: Staying on the Wagon + Preliminary Analysis

  • Checking in to see if people are tracking time the way they want to. Online and/or one-on-one check-ins before the workshop date, plus a group session on identifying and dealing with obstacles (because it helps to know that other people struggle and overcome these things). Preliminary analysis of small-scale data.
  • Resources: Frequently-encountered challenges and how to deal with them; resources on habit design; tool alternatives
  • Output: Things to try in order to support habit change; larger-scale data collection for people who are doing well

Session 3: Analyzing your data

  • Massaging your data to fit a common format; simple analyses and interpretation
  • Resources: Common analysis format and some sample charts/instructions; maybe even a web service?
  • Output: Yay, charts!

Session 4: More ways you can slice and dice your data

  • Bring other questions you’d like to ask, and we’ll show you how to extract that out of your data (if possible – and if not, what else you’ll probably need to collect going forward). Also, understanding and using basic statistics
  • Resources: Basic statistics, uncommon charts
  • Output: More analyses!

Session 5: Making data part of the way you live

  • Building a personal dashboard, integrating your time data into your decisions
  • Outcome: Be able to make day-to-day decisions using your time data; become comfortable doing ad-hoc queries to find out more

Session 6: Designing your own experiments

  • Designing experiments and measuring interventions (A/B/A, how to do a blind study on yourself)
  • Outcome: A plan for changing one thing and measuring the impact on time

Session 7: Recap, Show & Tell

  • Participants probably have half a year of data and a personal experiment or two – hooray! Share thoughts and stories, inspire each other, and figure out what the next steps look like.
  • Outcome: Collection of presentations

Does that progression make sense?

Eric thinks this would work out as a local workshop here in Toronto. I’m curious about what it would be like as a virtual workshop, too. We might even be able to experiment with both. Is this something you might be interested in? If you’re a QS organizer, would you like to give it a try in your own meetup?

I’d love to hear from you! Leave a comment below, or sign up with your e-mail address so that we can talk about it in e-mail. =)

[contact-form subject='Quantified Time Workshop'][contact-field label='Your e-mail' type='email' required='1'/][contact-field label='Where would you like the workshop?' type='radio' options='Toronto-based,Online'/][contact-field label='Is there anything else you%26#039;d like to learn about in terms of time tracking?' type='textarea'/][/contact-form]

Quantified Awesome: Analyzing time data–the questions I ask and how I answer them

I track my time using QuantifiedAwesome.com because I’ve built an interface that fits the way I work (mobile/web, lets me backdate entries, lets me disambiguate categories with text), but you can use whatever works for you – even a paper notebook where you write down the time and the category.

Here are some of the questions I ask about time and how I slice the data to answer them.

First level of analysis

There are a lot of things you can quickly analyze based on time, particularly if you have durations already pre-calculated. Here’s what I often look at:

How much sleep am I getting? To answer this question, I split my time records by midnight so that I can easily get the sum of sleep durations per day. This accounts for naps and late nights much better than just looking at the starting timestamp does. I can quickly check my sleep length by looking at my dashboard, which shows me how much sleep I got the previous day. I also have some Emacs Lisp code that gets the data from QuantifiedAwesome using an API and calculates my average sleep for a week, which I include in my weekly reviews.

Am I working too much? I want to keep my “Business – Earn” total to less than or equal to 20 hours per week (50%), and my total business-related hours to be less than 44 hours per week. I do this because otherwise work can be tempting to focus on, and I want to remind myself to do other things as well. This is reported on my dashboard, and I also see it in my weekly reviews.

How much discretionary time do I have? How much time do I have for hobbies, socializing, and other activities outside work, chores, personal routines, and sleep? This helps me appreciate the freedom I have in each day and to focus on making the most of it. I can quickly see this by looking at the “Discretionary” row in my time review, or by adding categories and summing up the times in my spreadsheets. This is particularly mind-boggling to look at over a year. I had 1563 hours of discretionary time in 2012 – that’s a decent-sized time for developing skills or building relationships.

What do I spend my discretionary time on? How much am I using for socializing, productive interests, and relaxation? I answer this question by looking at my time review or by creating pivot tables in my spreadsheet. It turns out that I spend more time on social things than I expected, so I don’t feel as guilty about blocking off time to work on my own things. I also have a lot of productive hobbies, so I can give myself more permission to play with less productive things or give myself downtime.

Second level of analysis

This might involve throwing your data into a spreadsheet and playing around with it. Here’s where I start digging into patterns and correlations.

If I spend more time on some activities, where do I spend less time? I looked at correlations for time spent on various activities per day.

How consistently do I do things? I’m curious about whether my sleep times, bedtimes, workload, etc. vary wildly from week to week or if they’re fairly stable and predictable. It’s easy to get a sense of this by looking at graphs and calculating standard deviations.

How does my bedtime affect my wake-up time? I compared starting timestamps with ending timestamps, discarding naps and differentiating between weekdays and weekends. (I should rerun this analysis now that I have more control over my wake-up times…)

How frequently do I write? I extracted the date from each timestamp and visualized it using a heatmap.

How consistently do I bike, and when’s the earliest I started biking this year? How much have I saved by biking? I review my bike time or visualize it as a pivot table, a bar graph, or a heatmap in order to see patterns. (I biked in January! =D) Since most bike trips replace public transit trips (currently $2.60 per trip), I can also use my time data to estimate how much I’m saving. (259 trips in 2012 = ~$670+, 122 trips so far in 2013.)

Do I need longer chunks of time to concentrate? I looked at discretionary activities and counted how many took 4+ hours, 3 hours, 2 hours, 1 hour, or less than an hour. I look at the character of the activities, too, so that I can figure out what I might not be working on if I only have short periods of time. It turns out that I get a lot of things done even in 1-2 hour chunks, and I tend to not take advantage of longer chunks even if I have them. (Hmm, I should do an analysis to see the longest chunks of straight discretionary time I have…)

Does waking up early give me more discretionary time or longer chunks of time to work with? It turns out that I actually have a lot of “me” time even if I wake up at ~8 AM. Since this meshes well with my sleep needs if I stay up to 11 PM or 12 midnight, I can guiltlessly sleep in knowing that I’m not missing out on a lot of productivity.

How does bulk cooking affect our time? How often do we do it? I look at sparklines and pivot tables to get a sense of when we’re doing lots of bulk cooking. (I should analyze this to find out how much time we actually save and where it goes to…)

How do my patterns shift over time? What hobbies did I pick up or let go? How does my life adapt to external events and other commitments? Pivot tables, sparklines and line graphs are great for looking at the patterns in my data.

How much time does it take me to get somewhere compared to, say, the estimates from Google Maps? I can figure this out by looking at the estimate before the trip and then comparing it with the time I’ve logged (door to door ). For example, a recent bike trip that was 32 minutes in Google was actually more like 43 minutes (including waiting for downtown traffic lights and finding someplace to lock up my bike). My morning commute is 36 minutes according to Google and around 48 minutes by my clock.

Third level of analysis: What do I want to do with my life?

This is where I take a step back and check: Am I happy? Is W- happy? Do I need to shift the way that I spend my time? What would I like to move my time towards? Am I getting the kind of value that I want to get out of my time? Then I can experiment. For example, I’m currently experimenting with increasing the time I spend exercising, and I’m curious about how that affects other parts of my life.

Wrapping up…

You can get a ton of information out of simple time tracking, even without anything else to correlate it with. Durations, start and end times, frequencies… There’s a lot you can do with a spreadsheet, some charts, or your own tools.

It gets even more interesting when you start matching it up with other data. One day I should try comparing my bike data with temperature and wind, or time spent cooking with how many portions we produce and at what cost per portion. =)

I get a lot of value out of my time-tracking. It helps me stay focused and be aware of the moment. I like reviewing and analyzing my data, too. I’m experimenting with ways to capture short sprints of more detail so that I can ask even more questions, and I love comparing notes with other people who track their time.

Check out more posts about my Quantified Self tracking!

Unstructured time, shaping your wants, and giving yourself permission

I was talking to a couple of other Quantified Self Toronto members about the management of unstructured time, since one of them was taking a gap year from school and the other one had just wrapped up regular employment. “How do I make sure I don’t waste my time?” they asked.

Here’s what I’ve been learning from semi-retirement: it can be easy to make good use of your discretionary time. (And to feel like you’re making good use of it!)

When I was planning for this experiment, I worried that I would end up frittering away the time on frivolities that people frown on: vegetating on the couch, playing games, getting sucked into the blackholes of social media and random Internet browsing.

It turns out that when you fill your life with so many more interesting possibilities, it’s easy to choose those instead. It reminds me of something I’ve learned about finances, too. Many activities make me just as happy as other activities do, so I might as well pick activities that are free or inexpensive and that align with my values. Likewise, I might as well pick activities that give me multiple benefits or that align with how I want to spend my time. A movie is diverting and it’s also good for learning about emotions and storytelling, but watching a movie while folding laundry is more useful than watching a movie in the theatre. I enjoy cooking more than I enjoy eating out. I enjoy writing, drawing, or spending time with W- more than I enjoy playing games.

So I don’t fill my days with plans or box myself in with calendared intentions. I look at the week ahead and list tasks that I need to remember, promises and appointments I’ve made, and maybe make space for one or two personal projects or ideas that I don’t want to forget about. I have a regular client engagement on Tuesdays and Thursdays, which I do because I like the client and what I get to help them with. Sometimes I take a week or an entire month off, to re-set my sense of time. Even during my regular weeks, I try to leave plenty of space.

It’s important to have space to follow where your interests and energy take you. I try to minimize the number of things I’ve promised to other people so that I have the flexibility to follow opportunities when they come up. That way, if I don’t feel like writing, I don’t. Maybe I’ll draw. Maybe I’ll code. Maybe I’ll work in the garden. Maybe I’ll tidy the house. Maybe I’ll read. Maybe I’ll plan.

I make exceptions for conversations. It’s hard to not schedule those if I want to make sure they happen at some point. Left to my own devices, I might never get around to talking to people. So I pay someone to handle my scheduling, and I ask her to space some of the optional ones apart (maybe one a week?) so that I have room for focusing on my things. It’s a little weird scheduling three or more weeks in advance, but space is important.

The rest of the time goes to whatever I feel like doing the most at that moment. It helps that I feel good about the things that I want to do, like writing, coding, and drawing, and that many of the things I do are also valued by others. I remember coming across in some book (was it Early Retirement Extreme? I should dig that up again) the idea that you can raise your skill in some activities or hobbies to the point that people are willing to pay you for it (now or in the future). Other things like exercise or cleaning the kitchen have their own rewards.

Did I luck into wanting these things by nature, or did I shape my wants to fit what I wanted to do? It’s hard to say. Most of it feels natural, but I do consciously tweak my motivations. Here’s an example of where I’m deliberately working on hacking my wants: exercise. W-‘s been helping me build a strength training habit through lots of encouragement and positive reinforcement. I also remind myself that the time I spend exercising will pay off both short-term and long-term, and that helps me get better at picking it over other alternatives (ex: bike to work and get some exercise versus work from home). It’s like what Mel wrote about digging out a path of least resistance so that it goes where you want to go. The other day, I was on my bike for almost 4 hours: 6 short trips, back and forth, covering mostly the same ground. I might not add as much to my “Done” list, but it’s good for me.

One of the benefits of choosing to spend my time this way is that it’s easy to say no to the common time-wasters that people often beat themselves up about. You don’t feel that need to escape because you haven’t been trying to keep yourself disciplined all day long. This also means that you aren’t wasting the emotional energy you’d otherwise use to beat yourself up about bad decisions. =) There are tasks that I postpone or don’t get around to, but it’s not because I suck. it’s just that I wanted to do other things instead, and I may get around to those tasks someday.

Even leisurely activities become experiments. I spent one Monday watching animé practically the whole day. I’m studying Japanese, so I watched the episodes with the original soundtrack and English subtitles. It was fun hearing the sounds start resolving themselves into intelligible words… and it was interesting feeling that barrier of “Oh, I should be doing productive things because it’s a weekday morning!” start to erode as I learned more about giving myself permission to follow my interests. (It turned out that watching those animé episodes was great for helping me follow along with the audio and the script. I often listen to just the audio as a way to immerse myself in the language and enjoy commuting or working… Bonus!)

Maybe the trick to managing an unstructured schedule isn’t to get better at discipline, but to get better at wanting good things, to get better at seeing the value in different activities. Then you can trust in yourself, with a little review and feedback so that you can tweak your course and make better decisions. At least that’s what seems to be working for me, and it might be something that would work for you too. =)

Quantified Self time-tracking: Choosing your buckets

This post missed its publishing schedule. I’m posting it today so that it doesn’t get lost.

Kate asked me how I chose the categories I use for tracking my time, and if I had any tips for someone who’s starting out.

I track my time at a medium level of detail – not so high-level that I can’t ask interesting questions, but not so low-level that it’s hard to summarize. To select an activity category (the non-bolded text in the table below), I type in parts of it. For example, “un subway” becomes “Unpaid work – Subway” and “quantified” becomes “Business – Quantified Awesome.” If something is ambiguous, the system shows me all the matches and lets me pick one. I can make some activity categories inactive so that they don’t get matched by the search. If the text doesn’t match anything, I’m shown the category creation screen, and the timestamped record is automatically created once I create the category for it. For “Other”-type activities and other activities that I’ve added a note field to, I can add a pipe character followed by a note (ex: “disc other | Yada yada yada”) for more details.

Here’s the general structure. I based the top-level categories on the OECD time studies so that I can compare my numbers with averages from other developed countries. The top-level categories I use are:

  • Business: Anything related to entrepreneurship or professional development
  • Discretionary: Hobbies, socializing, and other ways I choose to spend time
  • Personal: Personal care, daily routines, exercise, and things you can’t outsource because the point of the activity is personal benefit
  • Unpaid work: Chores, commuting, and other things you could theoretically outsource or eliminate
  • Work: Working as an employee; also, the occasional work lunch
  • Sleep: Sleep and naps!

The second-level group (Business – Build, Business – Connect, etc.) are the ones I recently created for reporting purposes. They look useful, so I might figure out how to build them into my database for more reporting goodness.

Within those major groups, I have one or two levels of record categories that I really use to track time. The higher groups are just for reporting. I create more activity types as needed.

Business
Business – Build
Business – Android
Business – Book review
Business – Business development
Business – Coding
Business – Delegation
Business – Drawing
Business – Learn
Business – Marketing
Business – Other
Business – Paperwork
Business – Plan
Business – Quantified Awesome
Business – Research
Business – Sales
Business – Connect
Business – Connect
Business – Correspondence
Business – Presentation
Business – Pro bono
Business – Earn
Business – Consulting – E1 – Conf
Business – Consulting – E1 – General
Business – Consulting – R1
Business – E-book
Business – Illustration – I1
Business – Illustration – I2 – UPV
Business – Illustration – I3 – M
Business – Illustration – I4 – SR
Business – Illustration – I5 – MT / G
Business – Sketchnoting
Discretionary
Discretionary – Other
Discretionary – Other
Discretionary – Play
Discretionary – Harry Potter (… because I forgot I already had “Discretionary – Play – LEGO Harry Potter”)
Discretionary – Play – Final Fantasy
Discretionary – Play – Katamari Forever
Discretionary – Play – LEGO Batman
Discretionary – Play – LEGO Harry Potter
Discretionary – Play – LEGO Heroica
Discretionary – Play – LEGO Indiana Jones
Discretionary – Play – LEGO Lord of the Rings
Discretionary – Play – LEGO Pirates
Discretionary – Play – LEGO Star Wars
Discretionary – Play – Nethack
Discretionary – Play – Other
Discretionary – Read – Nonfiction
Discretionary – Relax
Discretionary – Productive
Discretionary – Emacs
Discretionary – Gardening
Discretionary – Latin
Discretionary – Read – Blogs
Discretionary – Read – Fiction
Discretionary – Sewing
Discretionary – Tracking
Discretionary – Travel
Discretionary – Writing
Discretionary – Social
Discretionary – Family
Discretionary – Social
Personal
Personal – Exercise
Personal – Bike
Personal – Exercise
Personal – Scoot
Personal – Walk – Home
Personal – Walk – Other
Personal – Walk – Subway
Personal – Walk – Work
Personal – Life
Personal – Eat – Breakfast (… sometimes I track meals separately, but usually they’re just part of Personal – Routines)
Personal – Eat – Dinner
Personal – Eat – Lunch
Personal – Plan
Personal – Planning (… because I forgot I already have Personal – Plan)
Personal – Routines
Sleep
Sleep
Sleep
Unpaid work
Unpaid work – Commute
Unpaid work – Subway
Unpaid work – Wait
Unpaid work – Errands
Unpaid work – Errands
Unpaid work – Groceries
Unpaid work – Home
Unpaid work – Clean the kitchen
Unpaid work – Cook
Unpaid work – Laundry
Unpaid work – Tidy up
Unpaid work – Other
Unpaid work – Other
Unpaid work – Other travel
Work
Work
Work – C
Work – Lunch
Work – O
Work – Other
Work – T

I track business projects as their own categories so that I can bill for my time or figure out if something was worth doing. I track games separately so that I can figure out what I spend more time on.

I usually create a tracking record at the beginning of the activity so that quantifiedawesome.com can timestamp it. If I forget, I can say things like “-15m relax” to note that I started relaxing 15 minutes ago, or say things like “13:30 writ” to note that I started writing at 1:30 PM. If I’m seriously late, I can specify the date like this: “3/24 19:05 social”, or use the batch entry form. When I record an entry, the system shows me the edit form, so if I was wrong (I thought I was going to start Personal – Routines, but really, I went back to sleep), I can change the category using a dropdown and save it. I can also adjust start and end times, and the previous or next record is automatically adjusted too.

I track my time based on the primary activity so that I don’t double-count the time. For example, if I’m taking the subway, I file it as “Unpaid work – Subway” instead of “Discretionary – Read – Nonfiction” even if I read a book during the trip.

I have to build some kind of split/merge/refactor activity category tool someday, but so far, this is fine. And more reports! Reports are fun.

Tips and lessons learned:

If you’re starting out, a simple thing that lets you capture some text with a timestamp will work just fine. Jot down a few keywords that explain what you’re doing – enough to remember. Do this for a few days to a week in order to get a sense of what categories you may want to file things under.

Once you’ve figured out what general categories you want, use a button-based tracker like Tap Log or a list-based tracker like Time Recording (both Android). They’re great for selecting something from a defined list or structure. The downside is that it takes a liiittle more time to add a new category.

When you have lots of categories, going back to text input makes a lot more sense. No scrolling, no clicking around, and you can add new things fairly quickly. The substring search I put into quantifiedawesome.com works really well for me because I know which shortcuts map to which categories, and the structure is better than freeform text because reporting is easier.

Reporting is a lot more fun if you’re comfortable with spreadsheet pivot tables and other nifty features. I should do a screencast of how I use Excel to slice and dice my data. =)

Next step for me: Time estimates

I’ve started recording time estimates for more detailed tasks/activities so that I can a) figure out if I routinely overestimate or underestimate certain things, and b) get finer-grained time data. I know that it takes me roughly an hour from the time I get up to the time I get out of the house with my usual morning routine and maybe half an hour for the rush version, but it would be great to break that down into components and perhaps experiment with it. I’m also curious about how much time it takes me to get to places so that I can adjust Google Maps estimates for walking, biking, or public transit.

I write predictions down in Evernote (“Predict home by 7:05”). Evernote automatically timestamps the creation date, and I update the note with the actual time and any other notes I want to include (“home at 7:03; bike”). When I have several estimates and measurements, I’ll make a spreadsheet. When the spreadsheet structure settles down, I might build the functionality into Quantified Awesome. Successive prototyping helps me figure out how the data feels before I spend time building a structure for it. =)

So that’s how I track my time! See Where the Time Went for a recent presentation sharing my results.